f(x) = (sin(x))^3. What is f'(x)

Write sin3(x) as sin2x*sinx and differentiate using product rule, u=sin2x, v=sinx, du/dx=2sinxcosx, dv/dx=cosx where the product rule is u(dv/dx) + v(du/dx). This gets 2sin2xcosx + sin2xcosx = 3sin2xcosx which is the correct answer

LR
Answered by Liam R. Maths tutor

3311 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express (16x^2 + 4x^3)/(x^3 + 2x^2 - 8x) + 12x/(x-2) as one fraction in its simplest form.


Two forces P and Q act on a particle. The force P has magnitude 7 N and acts due north. The resultant of P and Q is a force of magnitude 10 N acting in a direction with bearing 120°. Find the magnitude of Q and the bearing of Q.


g(x) = e^(x-1) + x - 6 Show that the equation g(x) = 0 can be written as x = ln(6 - x) + 1, where x<6


Solve the inequality 6x - 7 + x^2 > 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning