Determine the tangent to the curve y = sin^2(x)/x at the point, x = pi/2. Leave your answer in the form ax+by+c=0

First determine the y coordinate of the curve at the given x coordinate, in this case, y = sin2(pi/2)/(pi/2) = 12/(pi/2) = 2/piDifferentiate the function with respect to x to determine the gradient of the tangent at the point, this expression requires the quotient rule.u = sin2(x) u' = 2sin(x)cos(x) = sin(2x) (by chain rule)v = x v' = 1Quotient rule: y' = (vu' - uv')/v2y' = (xsin(2x) - sin2(x))/x2At the point x = pi/2y' = (pi/2 (sin(pi) - sin2(pi/2))/(pi/2)2 = 0 - 4/pi2 = -4/pi2Equation of a line (y-y1) = m(x-x1)y-2/pi = -4/pi2(x-pi/2)Rearranging this gives the tangent to be 4x + (pi2)y - 4pi = 0

TB
Answered by Thomas B. Maths tutor

5071 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A function is defined as f(x) = x / sqrt(2x-2). Use the quotient rule to show that f'(x) = (x-2)/(2x-2)^(3/2)


Example of product rule - if y=e^(3x-x^3), what are the coordinates of stationary points and what are their nature?


Given a fixed parabola and a family of parallel lines with given fixed gradient, find the one line that intersects the parabola in one single point


What is the derivative of ln(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning