Determine the tangent to the curve y = sin^2(x)/x at the point, x = pi/2. Leave your answer in the form ax+by+c=0

First determine the y coordinate of the curve at the given x coordinate, in this case, y = sin2(pi/2)/(pi/2) = 12/(pi/2) = 2/piDifferentiate the function with respect to x to determine the gradient of the tangent at the point, this expression requires the quotient rule.u = sin2(x) u' = 2sin(x)cos(x) = sin(2x) (by chain rule)v = x v' = 1Quotient rule: y' = (vu' - uv')/v2y' = (xsin(2x) - sin2(x))/x2At the point x = pi/2y' = (pi/2 (sin(pi) - sin2(pi/2))/(pi/2)2 = 0 - 4/pi2 = -4/pi2Equation of a line (y-y1) = m(x-x1)y-2/pi = -4/pi2(x-pi/2)Rearranging this gives the tangent to be 4x + (pi2)y - 4pi = 0

TB
Answered by Thomas B. Maths tutor

5076 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate with respect to x: y = xln[2x]


How would I go about solving 3(x-2) = x+7?


The equation of a curve C is (x+3)(y-4)=x^2+y^2. Find dy/dx in terms of x and y


How do I find the integral ∫(ln(x))^2dx ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning