Where does the geometric series formula come from?

Rearranging the terms of the series into the usual "descending order" for polynomials, we get a series expansion of:  

axn-1 +........ax + a

A basic property of polynomials is that if you divide xn – 1 by x – 1, you'll get:

xn–1 + xn–2 + ... + x3 + x2 + x + 1

That is: 

a(xn–1 + xn–2 + ... + x3 + x2 + x + 1) = a(xn-1)/(x-1)

The above derivation can be extended to give the formula for infinite series, but requires tools from calculus. For now, just note that, for | r | < 1, a basic property of exponential functions is that rn must get closer and closer to zero as n gets larger. Very quickly, rn is as close to nothing as makes no difference, and, "at infinity", is ignored. This is, roughly-speaking, why the rn is missing in the infinite-sum formula.

NA
Answered by Naheem A. Maths tutor

4738 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of sin^2(X)


Using transformation rules and your knowledge of trigonometric functions, draw the graph y=2sin(2x)


Compute the integral of f(x)=x^3/x^4+1


(a) By using a suitable trigonometrical identity, solve the equation tan(2x-π/6)^2 =11-sec(2x-π/6)giving all values of x in radians to two decimal places in the interval 0<=x <=π .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning