A matrix M has eigenvectors (3,1,0) (2,8,2) (1,1,6) with corresponding eigenvalues 1, 6, 2 respectively. Write an invertible matrix P and diagonal matrix D such that M=PD(P^-1), hence calculate M^5.

Without even knowing M, the candidate can calculate M^5. This will follow from the fact that P is the matrix consisting of the eigenvectors of M as columns, and D will have the eigenvalues (in matching columns to their corresponding eigenvectors) down the lead diagonal. The candidate will have to do some computation to determine P^-1, but this is standard in A-level and will serve as good practice.Then we see that M^5 = (PD(P^-1))^5 = P(D^5)(P^-1), the essence behind this being that D^5 is very simple to calculate since D is diagonal.Again this final stage requires some computation, but getting comfortable with this serves as a great means to reduce the pressure of time in the exam.

CB
Answered by Cameron B. Maths tutor

3058 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx of the equation y=x^2 ln⁡(2x^2+1).


A particle of mass M is being suspended by two ropes from a horizontal ceiling. Rope A has a tension of 15N at 30 deg and rope B has a tension of xN at 45 deg, find M assuming the particle remains stationary.


Why is the derivative of x^2 equal to 2x?


Find the stationary pointsof the following: (y = x^3 - x^2 -16 x -17) and determine if each point is a maximum or minimum.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning