A matrix M has eigenvectors (3,1,0) (2,8,2) (1,1,6) with corresponding eigenvalues 1, 6, 2 respectively. Write an invertible matrix P and diagonal matrix D such that M=PD(P^-1), hence calculate M^5.

Without even knowing M, the candidate can calculate M^5. This will follow from the fact that P is the matrix consisting of the eigenvectors of M as columns, and D will have the eigenvalues (in matching columns to their corresponding eigenvectors) down the lead diagonal. The candidate will have to do some computation to determine P^-1, but this is standard in A-level and will serve as good practice.Then we see that M^5 = (PD(P^-1))^5 = P(D^5)(P^-1), the essence behind this being that D^5 is very simple to calculate since D is diagonal.Again this final stage requires some computation, but getting comfortable with this serves as a great means to reduce the pressure of time in the exam.

CB
Answered by Cameron B. Maths tutor

3314 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations: (1) y – 2x – 4 = 0 , (2) 4x^2 + y^2 + 20x = 0


Use integration by parts to find the integral of sin(x)*exp(x)


Solve e^(2x) = 5e^(x) - 6, giving your answers in exact form


∫ log(x) dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning