A matrix M has eigenvectors (3,1,0) (2,8,2) (1,1,6) with corresponding eigenvalues 1, 6, 2 respectively. Write an invertible matrix P and diagonal matrix D such that M=PD(P^-1), hence calculate M^5.

Without even knowing M, the candidate can calculate M^5. This will follow from the fact that P is the matrix consisting of the eigenvectors of M as columns, and D will have the eigenvalues (in matching columns to their corresponding eigenvectors) down the lead diagonal. The candidate will have to do some computation to determine P^-1, but this is standard in A-level and will serve as good practice.Then we see that M^5 = (PD(P^-1))^5 = P(D^5)(P^-1), the essence behind this being that D^5 is very simple to calculate since D is diagonal.Again this final stage requires some computation, but getting comfortable with this serves as a great means to reduce the pressure of time in the exam.

CB
Answered by Cameron B. Maths tutor

3020 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the differential equation dy/dx = 6xy^2 given that y=1 when x=2.


A curve has the equation y = 2x cos(3x) + (3x^2-4) sin(3x). Find the derivative in the form (mx^2 + n) cos(3x)


Solve to find sin x , 4cos^2 + 7sin x -7 =0


Differentiate ln(x^3 +2) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences