A stationary point of inflection implies a second derivative of 0, does this work the other way around?

No, and we may take a counterexample to see why. If y=x^5+5/3x^4, dy/dx=5x^4+20/3x^3, d2y/dx2=20x^3+20x*2=20x^2(x+1). Setting this to 0 will give us the candidates for a POI, but not all these numbers will be. If we set this to 0 we get 20x^2(x+1)=0 so x=-1, or x=0. But we see that at x=0 on the graph that the stationary point is a minimum.So just having a second derivative of 0 is not sufficient to determine if a point is an inflection, but setting the second derivative to 0 gives all the possible candidates for inflection points.

TR
Answered by Toby R. Maths tutor

3623 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to differentiate the function f(x)= 3x^3 + 2x^-3 - x^(1/2) + 6?


Find the gradient of the tangent to the line y=(x-2)^2 at the point that it intercepts the y-axis


A quantity N is increasing with respect to time, t. It is increasing in such a way that N = ae^(bt) where a and b are constants. Given when t = 0, N = 20, and t = 8, N = 60, find the value: of a and b, and of dN/dt when t = 12


Given that Sin(A) = 1/sqrt(3), show that Tan(A) = 1/sqrt(2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning