A stationary point of inflection implies a second derivative of 0, does this work the other way around?

No, and we may take a counterexample to see why. If y=x^5+5/3x^4, dy/dx=5x^4+20/3x^3, d2y/dx2=20x^3+20x*2=20x^2(x+1). Setting this to 0 will give us the candidates for a POI, but not all these numbers will be. If we set this to 0 we get 20x^2(x+1)=0 so x=-1, or x=0. But we see that at x=0 on the graph that the stationary point is a minimum.So just having a second derivative of 0 is not sufficient to determine if a point is an inflection, but setting the second derivative to 0 gives all the possible candidates for inflection points.

TR
Answered by Toby R. Maths tutor

3590 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation (4x^2-y^3+3^2x)=0. The point P (0,1) lies on C: what is the value of dy/dx at P?


Differentiate f(x)=(x+sin(2x))^4


The graph above shows the line y = 3*x^2. Find the area beneath the graph from y = 0 to y = 5.


Find the derivative with respect to x, of 5cos(x)+ 4sin(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning