Find the equation of the straight line passing through the origin that is tangent to the curve y = ln(x).

Firstly, recognise the relevant equations. The two functions are y = mx and y = ln(x). As the straight line is a tangent, we know that at a certain point x0, the functions and their gradients are equal. Thus mx0 = ln(x0) [1], and by differentiating, m = 1/x0 [2]. [2] can be subbed into [1] to give 1 = ln(x0), and so by rearranging, x0 = e. This gives the point of intersection as (e, 1). By simply using gradient = rise/run, we can see that the equation of the desired line is given by y = e-1x.

PS
Answered by Paul S. Maths tutor

6943 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What's the point of writing my mathematics well if I don't get extra marks for it?


How do i use chain rule to calculate the derivative dy/dx of a curve given by 2 "parametric equations": x=(t-1)^3, y=3t-8/t^2


Find the x co-ordinate of stationary point of the graph y=5x^3 +3x


State the conditions under which a binomial distribution can be approximated as a normal distribution, and state how the parameters needed would be calculated.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning