612 views

### Find the gradient of a curve whose parametric equations are x=t^2/2+1 and y=t/4-1 when t=2

Remember that the gradient of a curve is expressed as dy/dx. This can be solved by using the chain rule:

dy/dx = dy/dt*dt/dx. The dt in the denominator of the first term, and the numerator of the second term will cancel. It is also useful to remember that dt/dx is the same as 1/(dx/dt).

Now all we have to do to solve this is find the differential with respect to t of the the two parametric equations. Remember that if we have an equation where there is more than one term (i.e. + or - terms), each term can be differentiated separately and then added together afterwards to give the total differential.

Equation for x

First term: t2/2

Take the power which t is raised by (2) and multiply it by the coefficient of t(1/2), then drop the power by one.

d/dt [t2/2] = t

Second term: +1

The differential of a constant is always equal to 0.

d/dt [1] = 0.

... dx/dt = d/dt [t2/2 + 1] = d/dt [t2/2] + d/dt [1] = t + 0 =t

Equation for y

Repeat the process for y. This is a little tricker since the t is in the denominator of the first term. It is easier to perform the differential if we rewrite the term 4/t as 4t-1. The equation for y is now

y=4t-1-1

Using the same method as before, for the first term:

d/dt [4t-1] = -4t-2

and for the second term:

d/dt [-1] = 0

...dy/dt = d/dt [4t-1-1] = d/dt [4t-1] + d/dt [-1] = -4t-2 + 0 = -4t-2 = -4/t2.

Putting all this together

The equation we need to find the gradient is

dy/dx = dy/dt*dt/dx = dy/dt+1/(dx/dt)

We have already worked out dy/dt and dx/dt. To get dt/dx we just take the reciprocal of dx/dt (that is, switch the denominator and numerator round- in this case the denominator would be 1 as t=t/1).

dt/dx = 1/(dx/dt) = 1/t

Now dy/dx = dy/dt*dt/dx = -4/t2 * 1/t = (-4*1)/(t2*t) = -4/t3.

Now that we have an equation for the gardient, dy/dx, we can simply substiute in our value for t given in the question (t=2).

The gradient at t=2 is therefore:

dy/dx = -4/2= -4/(2*2*2) = -4/8 = -1/2

1 year ago

Answered by Abigail, an A Level Maths tutor with MyTutor

## Still stuck? Get one-to-one help from a personally interviewed subject specialist

#### 423 SUBJECT SPECIALISTS

£20 /hr

Degree: Physics (Bachelors) - Kings, London University

Subjects offered:Maths, Physics+ 1 more

Maths
Physics
Further Mathematics

“Positive, Dedicated, Motivating, Calm, Patient, Understanding, Professional, Organised, Experienced, Focused, Enthusiastic, Passionate”

MyTutor guarantee

|  1 completed tutorial

£22 /hr

Degree: MMath Pure Mathematics (Masters) - St. Andrews University

Subjects offered:Maths, English Literature

Maths
English Literature

“I am an experienced mathematician with a personal approach to tutoring. I'm here to help you further your mathematical potential.”

£20 /hr

Degree: Medicine (Bachelors) - Exeter University

Subjects offered:Maths, Chemistry+ 4 more

Maths
Chemistry
Biology
.UKCAT.
-Medical School Preparation-

“I am a second year medicaI student at Exeter with 5 A-levels and 1 AS-level. I have 3 years of experience in tutoring students. I would love to hear from you!”

£20 /hr

Degree: Clinical Science (Medical Physics) (Masters) - Kings, London University

Subjects offered:Maths, Physics+ 1 more

Maths
Physics
Chemistry

MyTutor guarantee

### You may also like...

#### Other A Level Maths questions

Susan is researching the population growth of a city. She proposes that x, the number of people in the city, t years after 2017 is given by x=250,000e^(0.012t) A.population in 2017 B.population in 2020 C.During which year would the population have doubled

Integrate the function f(x) = ax^2 + bx + c over the interval [0,1], where a, b and c are constants.

How to do the chain rule.

Given df/dx=2x+3 and the graph goes through (1,1), what is the function f?

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this.