Solve x^2 + 8x +3 = 0 by completing the square.

Using the completing the square method:

1. Notice (x+4)2 = x2 + 8x +16 which differs from the question by a constant

2. So we can write: 

x2 + 8x + 3 = (x+4)2 - 13      (check this yourself if you don't see it immediately)

3. So from the question we get:

(x+4)-13 = 0

(x+4)= 13     (by adding 13)

x+4 = +-sqrt(13)    (square root remembering to include the +-)

x = -4 +-sqrt(13)      (subtracting 4)

So we have answers of:

x = - 4 + sqrt(13)

x = - 4 - sqrt(13)

which can both be checked by substitution into the original equation.

TD
Answered by Tutor21349 D. Maths tutor

21117 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x)=ln(3x+1), x>0 and g(x)=d/dx(f(x)), x>0, find expressions for f^-1 and g


Solve the simultaneous equations: y + 4x + 1 = 0, and y^2 + 5x^2 + 2x = 0.


Given the function f(x)=ax^2+bx+c, we are given that it has x-intercepts at (0,0) and (8,0) and a tangent with slope=16 at the point x=2. Find the value of a,b, and c.


Integrate (2x)(e^x)dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences