Solve x^2 + 8x +3 = 0 by completing the square.

Using the completing the square method:

1. Notice (x+4)2 = x2 + 8x +16 which differs from the question by a constant

2. So we can write: 

x2 + 8x + 3 = (x+4)2 - 13      (check this yourself if you don't see it immediately)

3. So from the question we get:

(x+4)-13 = 0

(x+4)= 13     (by adding 13)

x+4 = +-sqrt(13)    (square root remembering to include the +-)

x = -4 +-sqrt(13)      (subtracting 4)

So we have answers of:

x = - 4 + sqrt(13)

x = - 4 - sqrt(13)

which can both be checked by substitution into the original equation.

TD
Answered by Tutor21349 D. Maths tutor

21917 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 1/((x^2)(1-3x) in partial fractions.


y=x^2 +4x-12, Find the Range (co-domain) when the domain of x is (1) -6 to 2 inclusive (2) the set of real numbers, R.


How do I draw and sketch an equation?


Using the limit definition of the derivative, find the derivative of f(x)=sin(3x) at x=2π


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning