Solve x^2 + 8x +3 = 0 by completing the square.

Using the completing the square method:

1. Notice (x+4)2 = x2 + 8x +16 which differs from the question by a constant

2. So we can write: 

x2 + 8x + 3 = (x+4)2 - 13      (check this yourself if you don't see it immediately)

3. So from the question we get:

(x+4)-13 = 0

(x+4)= 13     (by adding 13)

x+4 = +-sqrt(13)    (square root remembering to include the +-)

x = -4 +-sqrt(13)      (subtracting 4)

So we have answers of:

x = - 4 + sqrt(13)

x = - 4 - sqrt(13)

which can both be checked by substitution into the original equation.

TD
Answered by Tutor21349 D. Maths tutor

22607 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I struggle to simplify the following equation: (see answer)


A triangle has sides A, B and C. The side BC has length 20cm, the angle ABC is 50 deg and angle BAC is 68 deg. a) Show that the length of AC is 16.5cm, correct to three significant figures. b) The midpoint of BC is M, hence find the length of AM


The function f is defined for all real values of x as f(x) = c + 8x - x^2, where c is a constant. Given that the range of f is f(x) <= 19, find the value of c. Given instead that ff(2) = 8, find the possible values of c.


Prove that cos(4x) = 8(cos^4(x))-8(cos^2(x)) + 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning