Express 5/(2-sqrt(3)) in the form a + b*sqrt(3)

The first step that needs to be taken is to get rid of the square root from the denominator. This can be done by multiplying the top and bottom of the fraction by 2 + sqrt(3). This gives (10 + 5sqrt(3))/(4-3) = 10 + 5sqrt(3). This gives the answer in the desired form with a as 10 and b as 5.

GV
Answered by Guy V. Maths tutor

11670 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equation: 2x + y = 5, 3x + 4y = 10


How to determine the number of unique real roots of a quadratic equation.


How do we factorise an expression?


Expand (2x-4)(x+3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning