Solve the equation 2X^2 + 5X + 2 = 0 stating clearly the number of roots

Firstly, we can identify 2X2 + 5X + 2 = 0 as a quadratic equation by the fact it is an X2 term, an X term and an integer term all within the same equation, and is equal to zero. To solve a quadratic equation we have 3 main methods:
1) Factorisation2) Completing the square3) The Quadratic Formula
Factorisation is usually the quickest method, but is mainly a skill in spotting the common factors, and is complicated by the 2X2 coefficient. Completing the square yields the most information about the solutions, but I would not recommend it to students unless they are very confident with algebraic manipulation of equations.
Therefore I would teach the Quadratic Formula to solve this problem. We can see that our quadratic is of the form aX2 + bX + c = 0 and therefore we assign our coefficients:
a = 2 , b = 5 , c = 2
Recalling that the quadratic formula is X = - b ± sqr(b2 - 4ac) we can then substitute in our coefficients: 2a
X = - 5 ± sqr(52 - 4x2x2) 2x2
X = - 5 ± sqr(25 - 16) 4
X = - 5 ± 3 4
Evaluating first with the ± symbol acting as a plus sign , and then as a minus sign we obtain:
X = -0.5 and X = -2 Two Solutions

LP
Answered by Luke P. Maths tutor

3102 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

You are given a triangle ABC with sides length AB = 20cm, BC = 100cm and angle A = 70 degrees. Find the angle of C in degrees.


Work out the value of 2a^2 + b^3 when a = 5 and b = –3


Find the lowest common multiple and highest common factor of 30 and 60.


A shop sells bags of crisps in different size packs. There are 18 bags of crisps in a small pack (£4), 20 bags of crisps in a medium pack (£4.99) and 26 bags of crisps in a large pack (£6). Which size pack is the best value for money?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences