A straight line runs through these two coordinates (1,5) and (4,7), find the equation of the line.

Given that the equation is a straight line we know that it will take the form of y = mx + c with m as the gradient and c as the y-intercept. We can find the slope by doing (y1- y2)/(x1-x2) = m , if we sub in we get (5-7)/(1-4) = 2/3 we then have this eqn: y = 2/3x +c , we can then find c by subbing in either one of our coordinates: 5 = 2/3(1) + c = 13/3. The eqn of the line is: y = 2/3x + 13/3

DR
Answered by Daniel R. Maths tutor

2819 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorising Quadratics: x ^2 ​​ − x = 12


Expand and simplify 3(m+4)-2(4m+1)


Hannah's sweet problem (Edexcel 2015): There are n sweets, 6 are orange, rest of the sweets are yellow. She takes 2 sweets randomly without replacing them and the probability that 2 orange sweets are chosen is 1/3. Show that n^2-n-90 = 0.


How do I know when a quadratic function crosses the y-axis?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences