If h(x) = 2xsin(2x), find h'(x).

Differentiate using product rule as expression consist of two functions.Product Rule: d(f(x)g(x))/dx = g(x).f'(x) + f(x).g'(x)Chain Rule: d(f(g(x)))/dx = g'(x) . f'(g(x))
Let: f(x) = 2x f'(x) = 2 - simple differentiation g(x) = sin(2x) g'(x) = 2cos(2x) - chain rule as function is composite
Therefore: h'(x) = sin(2x).2 + 2x.2cos(2x)
Final Answer: h'(x) = 2sin(2x) + 2xcos(2x)

MS
Answered by Meer S. Maths tutor

3691 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A stone, of mass m , falls vertically downwards under gravity through still water. The initial speed of the stone is u . Find an expression for v at time t .


Simplify fully: (5 +√7)/ (2+√7)


How do you find the equation of a line at a given point that is tangent to a circle?


A particle of mass m moves from rest a time t=0, under the action of a variable force f(t) = A*t*exp(-B*t), where A,B are positive constants. Find the speed of the particle for large t, expressing the answer in terms of m, A, and B.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning