If h(x) = 2xsin(2x), find h'(x).

Differentiate using product rule as expression consist of two functions.Product Rule: d(f(x)g(x))/dx = g(x).f'(x) + f(x).g'(x)Chain Rule: d(f(g(x)))/dx = g'(x) . f'(g(x))
Let: f(x) = 2x f'(x) = 2 - simple differentiation g(x) = sin(2x) g'(x) = 2cos(2x) - chain rule as function is composite
Therefore: h'(x) = sin(2x).2 + 2x.2cos(2x)
Final Answer: h'(x) = 2sin(2x) + 2xcos(2x)

MS
Answered by Meer S. Maths tutor

3606 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I solve quadratic equation by completing the square : X^2 - 4X = 5


A ball is thrown from ground level at an angle of 30 degrees from the horizontal with a velocity of 20 m/s. It just clears a wall with a height of 5m, from this calculate the distances that the wall could be from the starting position.


Simplify (􏰀36x^−2)􏰁^ 0.5


Differentiate with respect to x: y=2^x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences