Work out the area of this triangle given the lengths of 1 sides (a) and 2 angles (A and B) using either the sine rule

We know the area of any triangle is equal to 0.5abSin(C). This means we need to find the length of side b and the angle C.First we can work out the angle C of the triangle as we know the angles in a triangle add up to 180 degrees. Say we have angle A is 35 and angle B is 70. This means angle C is 180 - (35 + 70). Next we can use the sine rule to calculate the value of side b. Say side a = 5cm. The rule is a/Sin(A) = b/Sin(B) = c/Sin(C). Substituting in the values we have we can say 5/Sin35 = b/Sin70. Rearrange to get b = 5Sin70/Sin35.
Therefore the area of the triangle = 0.5 * 5 * 5sin70/sin35 * sin 75

RA
Answered by Risha A. Maths tutor

3982 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

find the roots of the equation 7x^2+11x-2=0 in exact form


Solve algebraically the simulations equations: x^2+y^2=25 and y-3x=13


x^2 - x - 90 = 0. Solve to find x.


There are 20 sweets in a bag, 5 are white and 15 are black. What is the probability that a sweet chosen at random will be white?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning