Work out the area of this triangle given the lengths of 1 sides (a) and 2 angles (A and B) using either the sine rule

We know the area of any triangle is equal to 0.5abSin(C). This means we need to find the length of side b and the angle C.First we can work out the angle C of the triangle as we know the angles in a triangle add up to 180 degrees. Say we have angle A is 35 and angle B is 70. This means angle C is 180 - (35 + 70). Next we can use the sine rule to calculate the value of side b. Say side a = 5cm. The rule is a/Sin(A) = b/Sin(B) = c/Sin(C). Substituting in the values we have we can say 5/Sin35 = b/Sin70. Rearrange to get b = 5Sin70/Sin35.
Therefore the area of the triangle = 0.5 * 5 * 5sin70/sin35 * sin 75

RA
Answered by Risha A. Maths tutor

4250 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 11 counters in a bag. 8 of them red, 3 of them green. Neville takes 2 counters from the bag. Work out the probability that Neville takes one counter of each colour.


Solve the simultaneous equations 5x + y = 21, x - 3y = 9


How do you solve the simultaneous equations 3x + 4y = 5 and 2x – 3y = 9


Make x the subject of the following formula: x/2 + 3 = y - 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning