How do I expand a factorised equation?

Firstly put the equation into the the form (x+a)(x+b) this will make things easier later on.

Therefore, an equation such as (x+1)2 would become (x+1)(x+1)

Next expand the brackets. To do this simply multiply the first number in the first bracket, by the first number in the second bracket. Then multiply the second number in the first bracket by the second number in the second bracket. Then multiply together the second number in the first bracket by the first number in the second bracket. Finally multiply the first number in the first bracket with the second number in the second bracket.

This is much easier to see through working...

(x+1)(x+1)

1. xx = x2

2. 11 = 1

3. x1 = x

4. x1 = x

The last stage is to add all of this working together. This gives x2+x+x+1 which can be simplified to x2+2x+1. 

Or...

(x+a)(x+b)

1. xx = x2

2. ab = ab

3. ax = ax

4. bx = bx

= x2+ax+bx+ab. In this example a and b would both be integers.

And that's how to expand a factorised number.

EG
Answered by Emily G. Maths tutor

3230 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

factorise and simplify (x^2+4x+4)/(3x^2+15x+18)


A right-angled triangle has one angle size 60 degrees, and hypotenuse of length 32cm. Calculate the length of the side opposite the 60 degree angle, to 3sf.


A 20-foot ladder is leaning against a vertical wall. The bottom of the ladder is pulled away horizontally from the wall at 3 feet per second. How fast is the top of the ladder sliding down the wall when the bottom of the ladder is 10 feet away?


Factorise and solve: x^2 - 8x = -15


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences