A curve has equation 3x^4/3-16y^3/4=32. By differentiating implicitly find dy/dx in terms of x and y. Hence find the gradient of the curve at the point (8,1).

3x4/3-16y3/4=32Differentiating implicitly:4x1/3-12y-1/4(dy/dx)=0Simplifying and rearranging:x1/3=3y-1/4(dy/dx)dy/dx=1/3(x1/3y1/4)
Finding dy/dx using the (x,y) co-ordinates given:dy/dx=1/3(81/3)(11/4)=1/3(2)(1)=2/3

BG
Answered by Ben G. Maths tutor

3477 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Statistics: What is the difference between a Binomial and Poisson distribution?


Sketch the curve y = (2x-1)/(x+1) stating the equations of any asymptotes and coordinates of the intersection with the axis. As an extension, what standard transformations from C1 could you use on y=1/x to get this curve?


How many ways are there to arrange n distinct objects in a CIRCLE?


Find the tangent to the curve y=x^3+3 at the point x=1.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning