A curve has equation 3x^4/3-16y^3/4=32. By differentiating implicitly find dy/dx in terms of x and y. Hence find the gradient of the curve at the point (8,1).

3x4/3-16y3/4=32Differentiating implicitly:4x1/3-12y-1/4(dy/dx)=0Simplifying and rearranging:x1/3=3y-1/4(dy/dx)dy/dx=1/3(x1/3y1/4)
Finding dy/dx using the (x,y) co-ordinates given:dy/dx=1/3(81/3)(11/4)=1/3(2)(1)=2/3

BG
Answered by Ben G. Maths tutor

3562 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate the trigonometric functions sin(x) and cos(x) ?


The point A lies on the curve with equation y = x^(1/2). The tangent to this curve at A is parallel to the line 3y-2x=1. Find an equation of this tangent at A. (PP JUNE 2015 AQA)  


Why is there always constant of integration when you evaluate an indefinite integral?


Given f(x) = 7(e^2x) * (sin(3x)), find f'(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning