Solve the equation 2log (base 3)(x) - log (base 3)(x+4) = 2

First express as a single logarithm as follows. The number in front of the logarithm remembering log rules can be rewritten as the power of the number in the bracketsSo rewriting the LHS
log3(x2) - log3(x+4)
log3(x2/(x+4))remember inverse log3 is to the power of 3so2 = log3(x2/(x+4)) 32= (x2/(x+4))expanding and solving x2-9x-36=0(x-12)(x+3)=0x=12 as cannot do a negative logarithm of a number

TS
Answered by Theranjit S. Maths tutor

8432 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If x is a real number, what are the solutions to the quadratic: 4*x^2- 4*x+1 = 0


Why does adding a constant to a function's input (as in f(x-a)) shift the plot of the function along the x-axis?


Differentiate y=(4x - 5)^5 by using the chain rule.


Find the equation of the tangent to the curve y=3x^2-7x+5 at the point (2, 3) .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning