Solve the equation 2log (base 3)(x) - log (base 3)(x+4) = 2

First express as a single logarithm as follows. The number in front of the logarithm remembering log rules can be rewritten as the power of the number in the bracketsSo rewriting the LHS
log3(x2) - log3(x+4)
log3(x2/(x+4))remember inverse log3 is to the power of 3so2 = log3(x2/(x+4)) 32= (x2/(x+4))expanding and solving x2-9x-36=0(x-12)(x+3)=0x=12 as cannot do a negative logarithm of a number

TS
Answered by Theranjit S. Maths tutor

7956 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why does integration by parts work?


Integrate the function : F'(x)=3x^2+4x-5


A curve has equation y = 20x −x^2 −2x^3 . The curve has a stationary point at the point M where x = −2. Find the x-coordinate of the other stationary point of the curve.


Find the values of A between and including 0 and 360 degrees for tan(2A) = 3tan(A)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences