Solve the equation 2log (base 3)(x) - log (base 3)(x+4) = 2

First express as a single logarithm as follows. The number in front of the logarithm remembering log rules can be rewritten as the power of the number in the bracketsSo rewriting the LHS
log3(x2) - log3(x+4)
log3(x2/(x+4))remember inverse log3 is to the power of 3so2 = log3(x2/(x+4)) 32= (x2/(x+4))expanding and solving x2-9x-36=0(x-12)(x+3)=0x=12 as cannot do a negative logarithm of a number

TS
Answered by Theranjit S. Maths tutor

8243 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve 2sin2θ = 1 + cos2θ for 0° ≤ θ ≤ 180°


Find the first 3 terms, in ascending powers of x, of the binomial expansion of (2 – 9x)^4 giving each term in its simplest form.


Statistics: What is the difference between a Binomial and Poisson distribution?


How can I differentiate x^2+2y=y^2+4 with respect to x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning