Solve the simultaneous equations: a) 2x + y = 18, b) x - y = 6

Notice we have two different equations but that 'x' and 'y' take the same value in both equation a and equation b. In order how to work out what values they take we need to combine the two different equations to get one equation that encompasses all the information we have been give. We can see that by adding 'y' to both sides of equation b we will get 'x=6+y'. We now have a definition of 'x'. We can substitute this definition into equation a to work out the values of 'x' and 'y'. Therefore, we get '2(6+y) + y = 18', having replaced the 'x' with '6+y". By multiplying out this bracket we see that we get '12 + 2y + y = 18'. We can take 12 away from both sides and are left with '3y = 6'. Dividing both sides by 3, we are left with the fact that y = 2. Applying this information to the equation that 'x = 6 + y', we can now work out the value of 'x' too. Thus, 'x' is 6 + 2 = 8. We have worked out that x = 8 and y = 2.

RC
Answered by Rebecca C. Maths tutor

3185 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations x^2 + y^2 =13 and x= y - 5.


What is the difference between a parametric equation and a general equation?


Solve the quadratic equation: 5x2+8x+2


Aidan, Emily and Seth shared some sweets in the ratio 2 : 7: 4 Seth got 16 more sweets than Aidan. Work out the total number of sweets they shared.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning