Solve the simultaneous equations: a) 2x + y = 18, b) x - y = 6

Notice we have two different equations but that 'x' and 'y' take the same value in both equation a and equation b. In order how to work out what values they take we need to combine the two different equations to get one equation that encompasses all the information we have been give. We can see that by adding 'y' to both sides of equation b we will get 'x=6+y'. We now have a definition of 'x'. We can substitute this definition into equation a to work out the values of 'x' and 'y'. Therefore, we get '2(6+y) + y = 18', having replaced the 'x' with '6+y". By multiplying out this bracket we see that we get '12 + 2y + y = 18'. We can take 12 away from both sides and are left with '3y = 6'. Dividing both sides by 3, we are left with the fact that y = 2. Applying this information to the equation that 'x = 6 + y', we can now work out the value of 'x' too. Thus, 'x' is 6 + 2 = 8. We have worked out that x = 8 and y = 2.

RC
Answered by Rebecca C. Maths tutor

3007 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is 17% of 84?


Sketch the curve y=4-(x+3)^2, showing the points where the curve crosses the x-axis and any minimum or maximum points.


In a recent election, 42% of the voters were male. There were 400 more female voters than male voters. Assuming all voters are either male or female, how many voters were there overall?


15 machines work at the same rate, 15 machines can complete an order in 8 hours, however 3 of the machines break down after 6 hours. The other machines continue until the order is complete. In total how many hours does EACH machine work? (3 mark question)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences