Solve the simultaneous equations: a) 2x + y = 18, b) x - y = 6

Notice we have two different equations but that 'x' and 'y' take the same value in both equation a and equation b. In order how to work out what values they take we need to combine the two different equations to get one equation that encompasses all the information we have been give. We can see that by adding 'y' to both sides of equation b we will get 'x=6+y'. We now have a definition of 'x'. We can substitute this definition into equation a to work out the values of 'x' and 'y'. Therefore, we get '2(6+y) + y = 18', having replaced the 'x' with '6+y". By multiplying out this bracket we see that we get '12 + 2y + y = 18'. We can take 12 away from both sides and are left with '3y = 6'. Dividing both sides by 3, we are left with the fact that y = 2. Applying this information to the equation that 'x = 6 + y', we can now work out the value of 'x' too. Thus, 'x' is 6 + 2 = 8. We have worked out that x = 8 and y = 2.

RC
Answered by Rebecca C. Maths tutor

3113 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A fridge of height 2m and width 0.8m is tilted in a delivery van so that one edge rests on the edge of a table and another touches the ceiling, as shown in the diagram. The total height of the inside of the van is 1.5m. Find the height of the table.


Solve 3y^2 – 60y + 220 = 0 using the quadratic formula:


Expand and simplify (3a+b)(a-2b).


Factorise (5x^2 + 7x + 2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences