Draw the following inequality on a graph: x^2+4x+1<-2

First we must ensure the equation is in a form that is easy for us to plot!This means we equate the quadratic to 0 by shifting the -2 to the other side. We do this by adding +2 to both sides.Now, we draw the equation as if there is no inequality; Draw it as if there is an equals sign. This will become apparent in a little while. We know from solving it that x = -3 or x = -1. Thus when we plot the equation, the curved shape of the quadratic equation intersects the x axis (when y=0) at -3 and -1.Now, we needed to plot the INEQUALITY on the graph, not the equation. Thus, we sub in the sign again.x^2+4x+1<-2x^2+4x+3=0x^2+4x+3 < 0This statement means the equation must be less than 0. Well, we already know the equation is also in the form (x+3)(x+1) = 0(x+3)(x+1) < 0On the graph when we plot the quadratic, we see the region that satisfies this statement is the small area between the curve and the grid!

SA
Answered by Saad A. Maths tutor

2892 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you differentiate? And how is integration related to it?


Solve the following simultaneous equations: (1) 3x – 2y = 7 (2) 5x + 2y = 17


Solve the simultaneous equations: 3x+2y = 11, 2x-5y=20


What is the 'Nth-term rule' in linear (arithmetic) sequences and how is it used?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences