How do i use the chain rule twice when differentiating?

Ok so for this question we'll use this example: y = (e-2x^2 + 2)1/5
We start off by making the expression inside the brackets equal to u. In other words u = e-2x^2 + 2. This also means y = u1/5
Using the chain rule, we need to find du/dx and dy/du. dy/du = 1/5u-4/5. Now to find du/dx we must use the chain rule again as e-2x^2 has a power within a power.
So lets say z = e-2x^2 . You can use any letter but for this example i'll use z. And v = -2x2. Using the chain rule we get: dz/dx = -4xe-2x^2
Now we can go back to when we used the chain rule the first time to differentiate the whole expression. du/dx = -4xe-2x^2 and dy/du = 1/5u-4/5. Multiplying these together and replacing u with e-2x^2 + 2 gives us our final answer. dy/dx = 1/5(e-2x^2 + 2)-4/5-4xe-2x^2
Simplifying gives us dy/dx = -4xe-2x^2/5(e-2x^2 + 2)4/5

IL
Answered by Indiya L. Maths tutor

4626 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation x^6 + 26x^3 − 27 = 0


Using the "complete the square" method, solve the following x^2 +4x - 21 =0


let p be a polynomial p(x) = x^3+b*x^2+ c*x+24, where b and c are integers. Find a relation between b and c knowing that (x+2) divides p(x).


When using the addition rule in probability, why must we subtract the "intersection" to find the "union" with the Addition Rule?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning