A bag contains 5 red beads and 7 blue beads. Two beads are removed at random without replacement. Workout the probability that the two beads are the same colour.

This question is most simply solved with a probability tree diagram, where you just follow the paths of picking two same coloured beads. The first branch would be picking two red beads. P(R1) = 5 / 12, and P(R2) = 4 / 11, as the red bead would have been removed. The second branch would be picking two blue beads, where P(B1) = 7 / 12 and P(B2) = 6 / 11 for the same reason.
Our total probability is then (R1 x R2) + (B1 x B2) = (5 / 12 x 4 / 11) + (7 / 12 x 6 / 11) = 31 / 66

WM
Answered by Will M. Maths tutor

10789 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A sequence increases by 5 each time and the first term is x. The sum of the first four terms is 54. Set up and solve an equation to work out the value of x.


Solve 5x + 10 = 2x(5x + 10)


Solve the simultaneous equations x^2 + y^2 = 9 and y = 3x + 3


Why can’t you use the quadratic formula for every quadratic?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning