A bag contains 5 red beads and 7 blue beads. Two beads are removed at random without replacement. Workout the probability that the two beads are the same colour.

This question is most simply solved with a probability tree diagram, where you just follow the paths of picking two same coloured beads. The first branch would be picking two red beads. P(R1) = 5 / 12, and P(R2) = 4 / 11, as the red bead would have been removed. The second branch would be picking two blue beads, where P(B1) = 7 / 12 and P(B2) = 6 / 11 for the same reason.
Our total probability is then (R1 x R2) + (B1 x B2) = (5 / 12 x 4 / 11) + (7 / 12 x 6 / 11) = 31 / 66

WM
Answered by Will M. Maths tutor

10974 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

a right-angled triangle has base 2x + 1, height h and hypotenuse 3x. show that h^2 = 5x^2 - 4x - 1


What's the difference between the mean, median and mode?


If m=a^x, n=a^y, and a^2 =(m^y n^x)^z Show xyz=1.


Probability: These 6 coins are in a box - 10p, 10p, 10p, 20p, 20p, 50p. Someone takes 2 coins at random. What is the probability that the total value of the two coins is at least 40p?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning