Differentiate (3x^2-5x)/(4x^3+2x^2)

We can differentiate the expression using the quotient rule. If f(x)=u(x)/v(x) then f'(x)=(u'(x)v(x)-u(x)v'(x))/v(x)^2. In this case u(x)=3x^2-5x so u'(x)=6x-5 and v(x)=4x^3+2x^2 so v'(x)= 12x^2+4x. Using the quotient rule the full derivative is: (6x-5)(4x^3+2x^2)-(3x^2-5x)(12x^2+4x)/(4x^3+2x^2)^2

AI
Answered by Andras Ivan A. Maths tutor

4298 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the angle between the position vectors a and b, where a = (6i - j + 3k) and b = (-4i + 2j + 10k)?


Evaluate the following integral: (x^4 - x^2 +2)/(x^2(x-1)) dx


The equation (t – 1)x^2 + 4x + (t – 5) = 0, where t is a constant has no real roots. Show that t satisfies t2–6t+1>0


What is the difference between a scalar and vector quantity?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning