Find the turning point of y = x + 1 + 4/x2 and describe the nature of the turning point

To find the turning point of the equation, it should be recognised that we desire the point at which the gradient is 0. The gradient is given by dy/dx and hence we differentiate the equation with respect to x to yield the following:dy/ dx = 1 -8 x^(-3) Equating dy/ dx to 0 and solving for x, we get: x = 2 Substituting this into the original curve equation we can get y. The nature of the turning point can be determined by taking a second derivative i.e. find d^2y/ dx^2. The answer is found by substituting x = 2 into this expression, yielding d^2y/dx^2 > 0 and hence it is a minimum.

AK
Answered by Animit K. Maths tutor

10013 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area of the region, R, bounded by the curve y=x^(-2/3), the line x = 1 and the x axis . In addition, find the volume of revolution of this region when rotated 2 pi radians around the x axis.


Find the integral of 1/(x-5) with respect to x


Find the cross product of vectors a and b ( a x b ) where a = 3i + 6j + 4k and b = 6i - 2j + 0k.


How do you find stationary points of an equation, eg. y=x^2+3x+2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning