Find the turning point of y = x + 1 + 4/x2 and describe the nature of the turning point

To find the turning point of the equation, it should be recognised that we desire the point at which the gradient is 0. The gradient is given by dy/dx and hence we differentiate the equation with respect to x to yield the following:dy/ dx = 1 -8 x^(-3) Equating dy/ dx to 0 and solving for x, we get: x = 2 Substituting this into the original curve equation we can get y. The nature of the turning point can be determined by taking a second derivative i.e. find d^2y/ dx^2. The answer is found by substituting x = 2 into this expression, yielding d^2y/dx^2 > 0 and hence it is a minimum.

AK
Answered by Animit K. Maths tutor

9505 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I remember when a turning point of a function is a maximum or a minimum?


Show that, for all a, b and c, a^log_b (c) = c^log_b (a).


How do I find dy/dx for a given equation, once this is found how do I find the value of x such that dy/dx = 0.


How to differentiate x^2 + y^2 - 2x + 6y = 5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences