Find max point of y=-x^2-5x-10

Can either differentiate or using the completing the square method. Differentiation not covered at GCSE so completing the square should be done to get -((x+5/2)2+15/4). To find the max point we need to find the minimum value of (x+5/2)2. This is 0 (due to square) which occurs when x=-5/2 in which case y=-15/4. This can easily be done by equating the x value to the negative of the value within the inner bracket and y value to the value in the outer bracket.

GR
Answered by Gautham R. Maths tutor

2921 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Three different brands of rice are on sale, which brand provides the best value for money? Their prices are: Brand A) 250g for £3.21, Brand B) 400g for £5.30, Brand C) 750g for £8.80


Solve the simultaneous equations: 3x+2y=22, x=y-1


Simplify (2sin45 - tan45)/(4tan60) and leave your answer in the form of (sqrt(a)-sqrt(b))/c


By factorising, solve the quadratic equation x^2-8x+15=0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences