Find max point of y=-x^2-5x-10

Can either differentiate or using the completing the square method. Differentiation not covered at GCSE so completing the square should be done to get -((x+5/2)2+15/4). To find the max point we need to find the minimum value of (x+5/2)2. This is 0 (due to square) which occurs when x=-5/2 in which case y=-15/4. This can easily be done by equating the x value to the negative of the value within the inner bracket and y value to the value in the outer bracket.

GR
Answered by Gautham R. Maths tutor

3030 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Simplify fully (3x^2-8x-3)/(2x^2-6x)


Solve the simultaneous equations: 15x+10y=20 4x+5y=17


What is the lowest common multiple and the highest common factor of 120 and 150?


How do you write 36 as a product of its prime factors?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences