MYTUTOR SUBJECT ANSWERS

488 views

How does integration work?

There are a few different types of integration, the most common being Riemann integration.

Riemann integration allows you to find the area under the graph of a function between two points. Its definition uses something called a limit and it basically says we can approximate the area underneath the graph by adding up areas of rectangles (which is trivially "base times height") so that the width of all the rectangles together go from the first point to the second point and the varying heights of the rectangles goes from the bottom up and "hugs" the curve as best as possible.

Imagine you have a curve and approximate the area underneath it between a and b by finding the area of two rectangles each of width 

(b-a)/2, we realise it's quite a poor approximation, but if you make the approximation with 10 rectangles each of width (b-a)/10 and lots of varying heights we realise the approximation is better. Newton and Leibnitz (the independent founders of calculus) then said "what if we take the width of the rectangles to be really really small, so small that the width of the rectangles approaches zero!" then we realise we'd have an infinite number of rectangles to add up all of varying heights and all of width "essentially zero". 

What is really going on is that we've said let the width be dx and let us add up all the areas of rectangles as the limit of dx approaches zero. This can be seen in the standard lay out of integrals:

f(x) dx is simply the height of the function multiplied with a width (giving rise to the area of a rectangle) the integral sign at the beginning is an elongated S for "sum", hence you sum up all the areas of rectangles.

 
Sam  G. A Level Maths tutor, A Level Further Mathematics  tutor, GCSE...

2 years ago

Answered by Sam , an A Level Maths tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

244 SUBJECT SPECIALISTS

£20 /hr

Jan K.

Degree: Mathematics and Music (Bachelors) - Edinburgh University

Subjects offered: Maths, Physics

Maths
Physics

“About Myself I am a Mathematics student at Edinburgh University. I have a real passion for Mathematics, and I thouroughly enjoy explaining mathematical concepts to others. Having been home-educated all through school (which also gave ...”

£24 /hr

Barnaby W.

Degree: Mathematics (Masters) - Southampton University

Subjects offered: Maths, Further Mathematics

Maths
Further Mathematics

“ I have always enjoyed tutoring. I find that it gives me real satisfaction to see a child or student you have helped feel much more confident”

£24 /hr

Daniel R.

Degree: Mathematics (Bachelors) - Durham University

Subjects offered: Maths, Physics+ 1 more

Maths
Physics
Further Mathematics

“About me I’m a first year student studying Maths with European Studies at Durham. I have recently taken my A levels, achieving A* in Maths and Further Maths, so I am familiar with the course content and what the examiners are looking ...”

About the author

Sam G.

Currently unavailable: for regular students

Degree: Mathematics (Bachelors) - Durham University

Subjects offered: Maths, Science+ 3 more

Maths
Science
Physics
Further Mathematics
Chemistry

“Hi, I'm Sam, a mathematics student at Durham. Although I will mainly focus on A level and GCSE if people have other questions or more challenging questions (perhaps STEP or MAT) I will be more than happy to help!”

You may also like...

Posts by Sam

How do you take the derivative of a^x ?

How does integration work?

Some videos I've made

What is the best way to prove trig identities?

Other A Level Maths questions

Find where the graph of y=3x^2+7x-6 crosses the x axis

The radius of a circular disc is increasing at a constant rate of 0.003cm/s. Find the rate at which the area is increasing when the radius is 20cm.

Can you differentiate the following function using two methods:- y = e^(2x+1)

What is the second derivative used for?

View A Level Maths tutors

Cookies:

We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok