Find the coefficient of the constant term of the expression (2x+1/(4x^3 ))^8

In order to find the coefficient we need to know which term of the binomial expansion is constant. We know the expression to find the coefficient is (8Cn)(2^n)((1/4)^(8-n)), where n is the power we are rising each variable and the variables coefficients are risen to the same power as the variables. We know both terms have a variable so we want the value n for which the variables null each other. Hence, we are looking for the term when n-3*(8-n)=0 (the -3 term comes from it being a negative power), which we can rearrange to 4n -24=0, hence n=6.Having the value of n we put it in the binomial formula and obtain the result 112.

FE
Answered by Francisco E. Maths tutor

3796 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

f(x) = (x+1)^2 and g(x) = 2(x-1); Show that gf(x) =2x(x+2)


Mike, Sam and James play football. Mike scores 8 more goals than James. Sam scores 5 more goals than Mike. Altogether they score 72 goals. How many did Sam score?


Solve the equation (3x**2 + 8x + 4) = 0


How can you find the integral of x^-1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning