Explain the sliding filament theory

 Explain the sliding filament theory

The sliding filament theory describes the process by which muscles contract.

Muscle fibres are made up of myofibrils. Myofibrils comprise of sarcomeres, containing actin and myosin.

1.) A nerve impulse arrives at the neuromuscular junction, releasing acetylcholine.Depolarisation continues down the t-tubules, causing Ca2+ release.

2.) Ca2+ binds to troponin, altering the shape of troponin, causing tropomyosin to move off actin binding sites. Myosin heads are now able to bind to the exposed actin binding sites, forming a cross-bridge.

3.) Hydrolysis of ATP releases energy, allowing myosin to 'cock' its head,pulling actin to create an overlap. This is muscular contraction (shortening).

4.) ATP binds to myosin heads, causing the cross-bridge to be broken.Once the ATP is hydrolysed it can bind to another actin binding site, further down actin. Allowing contraction to continue. 

5.) When ATP and Ca2+ are depleted in the muscle contraction terminates. Actin binding sites are covered again with tropomyosin. 

Answered by Michaela S. Biology tutor

40313 Views

See similar Biology A Level tutors

Related Biology A Level answers

All answers ▸

What are the important similarities and differences between RNA and DNA?


The development of palm oil plantations in Sumatra has removed areas of forest that provided the habitat for tigers. Explain why planting strips of trees to link the forests would have an effect on the frequency of genetic disorders in these tigers.


What are gene mutations?


Describe and explain how a tiger with striped fur may have evolved from a non-striped ancestor


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy