Use logarithms to solve 9^x=15

According to the rules of logarithms, when you take a log of something to the power of something, you multiply the log of the base by the power, so in this case, taking logs of both sides would give us

xlog9=log15

log9 is a number so we can divide both sides to give us

x=log15/log9=1.23 to 3sf

MB
Answered by Molly B. Maths tutor

7203 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How many roots does the equation x^2 = x + 12 have and what are they?


The point P lies on a curve with equation: x=(4y-sin2y)^2. (i) Given P has coordinates (x, pi/2) find x. (ii) The tangent to the curve at P cuts the y-axis at the point A. Use calculus to find the coordinates of the point A.


y=20x-x^2-2x^3. Curve has a stationary point at the point M where x=-2. Find the x coordinate of the other stationary point of the curve and the value of the second derivative of both of these point, hence determining their nature.


What is the second derivative used for?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning