Given that the binomial expansion of (1+kx)^n begins 1+8x+16x^2+... a) find k and n b) for what x is this expansion valid?

a) We compare the expansion given to the standard binomial expansion (remembering the powers of k).(1+kx)n=1+n(kx)+(n(n-1)/2)(kx)2+...As this is true for all x (for which the expansion holds), we can compare coefficients. So nk=8 and k2n(n-1)/2=16 (or k2n(n-1)=32).Then we can solve these simultaneous equations by substitution. Rearrange the first equation to obtain k=8/n. Then substitute this into the second equation to obtain (8/n)2n(n-1)=32. Rearrange to obtain 2(n-1)/n=1, and then obtain n=2. Substitute this into k=8/n to get k=4.b) Now we require |kx|<1 for the expansion to hold, and as we now know k=4, we must have |x|<1/4.

GC
Answered by George C. Maths tutor

5553 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate ⌠( xcos^2(x))dx


(Core 2) Show that the region bounded by the curve y = 7x+ 6 - (1/x^2), the x axis and the lines x = 1 and x = 2 equals 16


Sketch the curve y=x^2-x-6


OCR C2 2015 Question 8: (a) Use logarithms to solve the equation 2^(n-3) = 18,000 , giving your answer correct to 3 significant figures. (b) Solve the simultaneous equations log2(x) + log2(y) = 8 & log2(x^2/y) = 7.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning