Find the equation of the tangent to the curve y = 2 ln(2e - x) at the point on the curve where x = e.

The first step is to find the y coordinate at the point on the curve where x = e. To do this we subsitute x = e into the equation of the curve, so y = 2ln(2e - x) becomes y = 2ln(2e - e). Simplifying this, we get y = 2ln(e). Using our knowledge of the natural logarithm, ln(e) = 1, so therefore y = 2.

Next, we find the gradient of the curve at the point x = e. We do this by differentiating the equation, and then subsituting the value for x in. Note that we have to use the chain rule.

dy/dx =  -2/(2e - x) = -2/(2e - e) = -2/e.

Using all the information we've found, we can now produce the equation of the tangent line using the equation of a line formula, y - y= m(x - x0), where m is the gradient.

y - 2 = -2/e (x - e). Rearranging this, we get y = 4 - 2x/e as the equation of the tangent line.

Answered by Rhiannon T. Maths tutor

8522 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find (and simplify) an expression, in terms of n, for the sum of the first n terms of the series 5 + 8 + 11 + 14 + ... ?


What is differentiation and why is it useful?


Find a local minimum of the function f(x) = x^3 - 2x.


Using the substitution x = 2cosu, find the integral of dx/((x^2)(4-x^2)^1/2), evaluated between x=1 and x=sqrt(2).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy