How do you take the derivative of a^x ?

There are two ways you can take the derivative of a^x.
1) 
Let y = a^x  now we're trying to find dy/dx
2)
ln(y) = xln(a)  take logs of both sides and use log rules
3)
(dy/dx)*(1/y) = ln(a) take the derivative of both sides using the chain rule                     on the left hand side.
4)
dy/dx = ln(a)*y       multiply both sides by y
5)
dy/dx = ln(a) *a^x    realise y= a^x and replace it
Now we're done!
 
Alternatively we could realise that any exponent can be written as e to the power of something with a log in it.
So
1)
y = a^x = (e^ln(a))^x  just rewritting 'a'
2)
y = e^xln(a)        multiplying exponent rule
3)
dy/dx = ln(a)*e^xln(a) take the derivative of both sides using the chain                         rule for the right hand side
4)
dy/dx = ln(a)*a^x            substitute back to get desired result
 
 
 

SG
Answered by Sam G. Maths tutor

6579 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate with respect to x ) dy/dx= 6x^5


State the trigonometric identities for sin2x, cos2x and tan2x


Find the tangent and normal to the curve y=(4-x)(x+2) at the point (2, 8)


If a ball is dropped from 6m above the ground, how long does it take to hit the floor and what is its speed at impact (assuming air resistance is negligible)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning