How do you take the derivative of a^x ?

There are two ways you can take the derivative of a^x.
1) 
Let y = a^x  now we're trying to find dy/dx
2)
ln(y) = xln(a)  take logs of both sides and use log rules
3)
(dy/dx)*(1/y) = ln(a) take the derivative of both sides using the chain rule                     on the left hand side.
4)
dy/dx = ln(a)*y       multiply both sides by y
5)
dy/dx = ln(a) *a^x    realise y= a^x and replace it
Now we're done!
 
Alternatively we could realise that any exponent can be written as e to the power of something with a log in it.
So
1)
y = a^x = (e^ln(a))^x  just rewritting 'a'
2)
y = e^xln(a)        multiplying exponent rule
3)
dy/dx = ln(a)*e^xln(a) take the derivative of both sides using the chain                         rule for the right hand side
4)
dy/dx = ln(a)*a^x            substitute back to get desired result
 
 
 

SG
Answered by Sam G. Maths tutor

6596 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(Core 2) Show that the region bounded by the curve y = 7x+ 6 - (1/x^2), the x axis and the lines x = 1 and x = 2 equals 16


Prove that sec^2(θ) + cosec^2(θ) = sec^2(θ) * cosec^2(θ)


What is differentiation?


A cubic polynomial has the form p(z)=z^3+bz^2+cz+d, z is Complex and b, c, d are Real. Given that a solution of p(z)=0 is z1=3-2i and that p(-2)=0, find the values of b, c and d.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning