Let X be a normally distributed random variable with mean 20 and standard deviation 6. Find: a) P(X < 27); and b) the value of x such that P(X < x) = 0.3015.

a) 27 is higher than the mean. So we can simply calculate the z value. z = (27 - 20)/6 ≈ 1.17. Using the table in the formula booklet, we find that P(Z < 1.17) = 0.8790, so P(X < 27) = 0.8790. b) Let's give an expression for our z value: z = (x - 20)/6. So P(Z < z) = P(X < x) = 0.3015. But this is lower than 0.5, so to find the value of z we first need to find -z. We find that P(Z < -z) = 1 - 0.3015 = 0.6985. This, from the table, corresponds to a z value of 0.52, so z = -0.52. Hence from our first expression for z, we can deduce that x = (-0.52 × 6) + 20 = 16.88.

MH
Answered by Maximillian H. Maths tutor

4236 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coordinates of the turning points of the curve y = 4/3 x^3 + 3x^2-4x+1


Solve dy/dx= (x√(x^2+3))/e^2y given that y=0 when x=1, giving your answer in the form y = f(x)


Differentiate y=ln(x)+5x^2, and give the equation of the tangent at the point x=1


Differentiate the expression x^6+5x^4+3 with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning