Let X be a normally distributed random variable with mean 20 and standard deviation 6. Find: a) P(X < 27); and b) the value of x such that P(X < x) = 0.3015.

a) 27 is higher than the mean. So we can simply calculate the z value. z = (27 - 20)/6 ≈ 1.17. Using the table in the formula booklet, we find that P(Z < 1.17) = 0.8790, so P(X < 27) = 0.8790. b) Let's give an expression for our z value: z = (x - 20)/6. So P(Z < z) = P(X < x) = 0.3015. But this is lower than 0.5, so to find the value of z we first need to find -z. We find that P(Z < -z) = 1 - 0.3015 = 0.6985. This, from the table, corresponds to a z value of 0.52, so z = -0.52. Hence from our first expression for z, we can deduce that x = (-0.52 × 6) + 20 = 16.88.

MH
Answered by Maximillian H. Maths tutor

4151 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line l1 has equation 4y - 3x = 10. Line l2 passes through points (5, -1) and (-1, 8). Determine whether the lines l1 and l2 are parallel, perpendicular or neither.


f(x)=(2x+1)/(x-1) with domain x>3. (a)Find the inverse of f(x). (b)Find the range of f(x). (c) g(x)=x+5 for all x. Find the value of x such that fg(x)=3.


By first expanding the brackets, differentiate the equation: y=(4x^4 + 3x)(2x^2 - 9)


A curve has equation y = 7 - 2x^5. a) Find dy/dx. b) Find an equation for the tangent to the curve at the point where x=1.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning