Let X be a normally distributed random variable with mean 20 and standard deviation 6. Find: a) P(X < 27); and b) the value of x such that P(X < x) = 0.3015.

a) 27 is higher than the mean. So we can simply calculate the z value. z = (27 - 20)/6 ≈ 1.17. Using the table in the formula booklet, we find that P(Z < 1.17) = 0.8790, so P(X < 27) = 0.8790. b) Let's give an expression for our z value: z = (x - 20)/6. So P(Z < z) = P(X < x) = 0.3015. But this is lower than 0.5, so to find the value of z we first need to find -z. We find that P(Z < -z) = 1 - 0.3015 = 0.6985. This, from the table, corresponds to a z value of 0.52, so z = -0.52. Hence from our first expression for z, we can deduce that x = (-0.52 × 6) + 20 = 16.88.

MH
Answered by Maximillian H. Maths tutor

3775 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A block mass m lies on an incline rough plane, with coefficient of friction µ. The angle of the block is increased slowly, calculate the maximum angle of the slope that can be achieved without the block slipping.


Given that y=sin2x(3x-1)^4, find dy/dx


Why is 2 + 2 not equal to 12?


Using Discriminants to Find the Number of Roots of a Quadratic Curve


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences