Given that 5cos^2(x) - cos(x) = sin^2(x), find the possible values of cos(x) using a suitable quadratic equation.

First, need to get all the terms in the equation to be the same. Using the following identity, it is possible to achieve this:

sin2(x) + cos2(x) = 1

1 - cos2(x) = sin2(x)

Substituting this into the equation in the question:

5cos2(x) - cos(x) = 1 - cos2(x)

6cos2(x) - cos(x) - 1 = 0

Replace the term cos(x) with y:

6y2 - y - 1 = 0

Product = -6

Sum = -1

There numbers that satisfy this are -3 and 2. Therefore, the factorised form of the eqation is:

(2y - 1)(3y + 1) = 0

The roots of this equation are: y = cos(x) = -1/3 or 1/2. Therefore these are the possible values of cos(x).

AB
Answered by Andrew B. Maths tutor

8615 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I calculate the reactant forces for the supports of the beam where the centre of mass is not same distance from each support?


What is calculus?


Why can't you divide something by 0?


The polynomial f(x) is defined by f(x) = 18x^3 + 3x^2 + 28x + 12. Use the Factor Theorem to show that (3x+2) is a factor of f(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning