How do I solve inequalities when they're not linear?

Ok, let's talk about quadratic inequalities in particular. Look at the inequality x^2 - 8x + 15 > 0.What does a solution to this mean? It means the curve x^2 - 8x + 15 > 0 is above the x-axis at this point. So let's start by finding where the curve actually intersects the x-axis. That is, solutions to x^2 - 8x + 15 = 0.We know how to do this: just factorise. We get (x-5)(x-3) = 0, so the curve intersects the axis at x = 5 and at x = 3.Now, if you think about the shape of the curve, you will see that it is a parabola with a minimum and no maximum, since the x^2 term is positive. So in fact it must be that the curve is below the x-axis between x = 3 and x = 5, and above the axis everywhere else.So the solution to the inequality is x < 3 or x > 5.

DF
Answered by Damon F. Maths tutor

2941 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand the quadratic equation and simplify: (3a+4)(a-1)


3. (a) State the nth term of each of the following sequences: (i) 3, 7, 11, 15, 19, ....


Solve the simultaneous equations: 4X+6Y=4 and 7X+5Y=12.5


What is the name of a triangle with two equal sides and angles? What is the size of the angle x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning