Let Curve C be f(x)=(1/3)(x^2)+8 and line L be y=3x+k where k is a positive constant. Given that L is tangent to C, find the value of k. (6 marks approx)

SO when we see the word tangent we should be thinking about rate of change. Recall that the line being a tangent means they meet and have the same derivative at this point OR we find k such that f(x)-y=0 has a double root. (We can prove that this is true!)So(1/3)x^2+8-k-3x=0 so we solve for k such that the discriminant is 0. that is 9-4(1/3)(8-k)=0 This implies k=8-27/4=5/4

GJ
Answered by Gurbir J. Further Mathematics tutor

7145 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

What is the equation of a circle with centre (3,4) and radius 4?


f'(x) = 3x^2 - 5cos(3x) + 90. Find f(x) and f''(x).


f(x) = 3x^3 – x^2 – 20x – 12 (a) Use the factor theorem to show that (3x + 2) is a factor of f(x). [2 marks] (b) Factorise f(x) fully. [3 marks]


l1 and l2 are tangents of a circle. l1 intersects the circle at (3-√3,5) with a gradient of √3, and l2 intersects the circle at (3+√2,4+√2) with a gradient of -1. Find the centre of the circle, and hence find the radius of the circle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences