Let Curve C be f(x)=(1/3)(x^2)+8 and line L be y=3x+k where k is a positive constant. Given that L is tangent to C, find the value of k. (6 marks approx)

SO when we see the word tangent we should be thinking about rate of change. Recall that the line being a tangent means they meet and have the same derivative at this point OR we find k such that f(x)-y=0 has a double root. (We can prove that this is true!)So(1/3)x^2+8-k-3x=0 so we solve for k such that the discriminant is 0. that is 9-4(1/3)(8-k)=0 This implies k=8-27/4=5/4

GJ
Answered by Gurbir J. Further Mathematics tutor

7521 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Find the coordinates of the stationary points on the curve y=x^5 -15x^3


A=(1,a;0,1/2) B=(1,-1;0,2) AB=I, calculate the value of a.


Consider the Matrix M (below). Find the determiannt of the matrix M by using; (a) cofactor expansion along the first row, (b) cofactor expansion along the second column


In the expansion of (x-7)(3x**2+kx-3) the coefficient of x**2 is 0. i) Find the value of k ii) Find the coefficient of x. iii) write the fully expanded equation in terms of x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning