Define the derivative of a function f(x) and use this to calculate the derivative of f(x)=x^n for positive integer n.

f'(x)=lim(h->0) of [f(x+h)-f(x)]/h. In the case where f(x)=x^n, we have that f(x+h)-f(x)=h*nx^(n-1) + (h^2)*p(x) for a polynomial p(x), shown by binomially expanding f(x+h). Then dividing through by h and taking the limit gives f'(x)=nx^n-1.

TD
Answered by Tutor302361 D. Maths tutor

3074 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the value of dy/dx at the point where x = 2 on the curve with equation y = x^ 2 √(5x – 1).


Find the x-coordinates of any stationary points of the equation y = x^3 - 2x + 4/x


Rewrite (2+(12)^(1/2))/(2+3^(1/2)) in the form a+b((c)^(1/2))


Find the stationary points of y= 5x^2 + 2x + 7


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning