Define the derivative of a function f(x) and use this to calculate the derivative of f(x)=x^n for positive integer n.

f'(x)=lim(h->0) of [f(x+h)-f(x)]/h. In the case where f(x)=x^n, we have that f(x+h)-f(x)=h*nx^(n-1) + (h^2)*p(x) for a polynomial p(x), shown by binomially expanding f(x+h). Then dividing through by h and taking the limit gives f'(x)=nx^n-1.

TD
Answered by Tutor302361 D. Maths tutor

2702 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y=4x/(x^2+5)


Showing all your working, evaluate ∫ (21x^6 - e^2x- (1/x) +6)dx


Differentiate and then integrate: x^2 + 3x


How do I calculate the reactant forces for the supports of the beam where the centre of mass is not same distance from each support?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences