Let N be an integer not divisible by 3. Prove N^2 = 3a + 1, where a is an integer

For N to be not divisible by 3, N can either be of the form 3k + 1 (1,4...) or 3k + 2 (2,5...), where k is an integer.
The proof can then be done by checking both 3k + 1 and 3k + 2 when N is squared, to see if they can be rearranged into the form 3a + 1.
N = 3k + 1, so N2 = (3k + 1)2 = 9k2 + 6k + 1
This can then be rearranged to prove 3a + 1. Note that a can be made of any polynomial of k with integer powers, as k is an integer so its polynomial with integer powers will also be an integer for any value of k.
9k2 + 6k + 1 = 3(3k2 +2k) + 1, so true for N = 3k + 1
The same method can then be used to prove for N = 3k + 2
N= 3k + 2, N2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1

Answered by Maths tutor

25408 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express square root of 48 in the form n x square root of 3 , where n is an integer


Find the gradient of y=x^2-6x-16 at the point where the curve crosses the x-axis


A stone is thrown from a bridge 10m above water at 30ms^-1 30 degrees above the horizontal. How long does the stone take to strike the water? What is its horizontal displacement at this time?


Find the area R under the curve when f(x)=xcos(x) between the limits x=0 and x=2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning