Let N be an integer not divisible by 3. Prove N^2 = 3a + 1, where a is an integer

For N to be not divisible by 3, N can either be of the form 3k + 1 (1,4...) or 3k + 2 (2,5...), where k is an integer.
The proof can then be done by checking both 3k + 1 and 3k + 2 when N is squared, to see if they can be rearranged into the form 3a + 1.
N = 3k + 1, so N2 = (3k + 1)2 = 9k2 + 6k + 1
This can then be rearranged to prove 3a + 1. Note that a can be made of any polynomial of k with integer powers, as k is an integer so its polynomial with integer powers will also be an integer for any value of k.
9k2 + 6k + 1 = 3(3k2 +2k) + 1, so true for N = 3k + 1
The same method can then be used to prove for N = 3k + 2
N= 3k + 2, N2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1

Answered by Maths tutor

27111 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(C3 question). Find an expression for all stationary points on the curve y=sin(x)cos(x). How many such points are there and why?


What are the solutions of (x^3)+6 = 2(x^2)+5x given x = 3 is a solution?


Using the addition formula for sin(x+y), find sin(3x) in terms of sin(x) and hence show that sin(10) is a root of the equation 8x^3 - 6x + 1


Show that 1+cot^2(x)=cosec^2(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning