A hemisphere is placed on top of an upside down cone. The cone has height 9cm and the hemisphere has radius 3cm. The total volume of this composite solid is x cm^3. Calculate the value of x, leaving your answer in terms of π.

To work out the total volume of the composite solid, we need the volumes of both the cone and the hemisphere. GCSE Maths students are expected to know these respective formulae; volume of a sphere = ⁴/₃πr³ and volume of a cone = ¹/₃πr²h.
Hence, the volume of the hemisphere is ⁴/₃ × π × 3³ × ¹/₂ (being careful to half the volume that the full sphere would be) = 18π and the volume of the cone is ¹/₃ × π × 3² × 9 = 27π.
Therefore, the total volume of the solid and the value of x is 18π + 27π = 45π.

EC
Answered by Elliot C. Maths tutor

8028 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Make y the subject of this formula: 9x = p(8 + y) + 5


You are given a triangle ABC with sides length AB = 20cm, BC = 100cm and angle A = 70 degrees. Find the angle of C in degrees.


I struggle with time management whilst doing an exam paper. How will I be able to answer every question in the time given for the exam?


How does Pythagoras Theorem work?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning