Calculate the value of the definite integral (x^3 + 3x + 2) with limits x=2 and x=1

a) Integrate the given expression using integration laws we have learnt to give [(x^4)/4 + (3(x^2))/2 + 2x ] and you do not need a +c constant as we have limits.b) Substitute the limits into the equation we calculated remembering to do the upper limit substitution minus the lower limit substitution to give: [(2^4)/4 + (3)(2^2)/2 + 2(2)] - [(1^4)/4 + (3)(1^2)/2 + 2(1)] which equals [16/4 + 6 + 4] - [1/4 + 3/2 + 2]= [14] - [1/4 + 6/4 + 8/4] =[56/4] - [15/4]= 41/4

Answered by Maths tutor

3423 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that: y = 3x^2 + 6x^1/3 + (2x^3 - 7)/(3x^1/2), x > 0 Find dy/dx, give each term in its simplest form


Why is the derivative of x^2 equal to 2x?


Express (16x^2 + 4x^3)/(x^3 + 2x^2 - 8x) + 12x/(x-2) as one fraction in its simplest form.


How do I find the maximum/minimum of a curve?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning