Curves C1 and C2 have equations y= ln(4x-7)+18 and y= a(x^2 +b)^1/2 respectively, where a and b are positive constants. The point P lies on both curves and has x-coordinate 2. It is given that the gradient of C1 at P is equal to the gradient of C2 at P.

y= ln(4x-7)+18 y= a(x^2 +b)^1/2
At x=2 dy/dx = dy/dx and y =y
At x =2 y = ln(8-7) +18 y = ln 1 +18 y =18
At x = 2 18=a(4 +b)^1/2 18/(4+b)^1/2= a
y=ln(4x-7)+18dy/dx= 4/(4x-7)
At x= 2 dy/dx= 4/8-7= 4
y=a(x^2 +b)^1/2 dy/dx= xa(x^2 +b)^-1/2
At x=2 4=2a(4+b)^-1/22=a(4+b)^ -1/22(4+b)^1/2= a
2(4+b)^1/2= a 18/(4+b)^1/2= a 18/(4+b)^1/2= 2(4+b)^1/29=4+b5=b
2(4+b)^1/2= a 2(4+5)^1/2= a 2(9)^1/2= a 2(3)=a6=a
a=6 b=5

JM
Answered by Jordan M. Maths tutor

9899 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the following expression with respect to x, (2+4x^3)/x^2


Find d^2y/dx^2 for y=4x^4−3x^3−6x^2+x


Why is the derivative of 2^x not x*2^(x-1)?


Solving a quadratic with ax^2 e.g. 2x^2 - 11x + 12 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning