Show using mathematical induction that 8^n - 1 is divisible by 7 for n=1,2,3,...

First step: n=1 we have 81 -1=7 which is divisible by 7. Assumption step: 8k-1 is divisible by 7. Induction step: Using the previous step we have that 8k-1=7x. So 8k = 7x+1. Therefore, 8k+1- 1=8(8k)-1=8(7x+1)-1 = 56x + 8 -1 = 56x+7 = 7(8x+1) which is divisible by 7. Hence, since it is true for n=1, n = k and for n=k+1 then it is true for all positive integers

MC
Answered by Mike C. Maths tutor

5886 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find tan(A-B) sec^2(A) - 2tan(A) = 16 && sin(B)sec^2(B) = 64cos(B)cosec^2(B)


Find the integral of the function y = ln(x)


Find the area between the positive x axis and the line given by y=-(x^2)+2x


Differentiate y=3xe^{3x^2}+2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning