A curve has the equation y=x^2+4x+4 and a line has the equation y=2x+3. Show the line and curve have only one point of intersection and find its coordinate..

First set the equations equal to each other: x^2+4x+4 = 2x+3.Rearrange for x in form ax^2+bx+c : x^2+2x+1=0Factorise: (x+1)^2=0. Repeated root, hence only one intersection. x=-1. Using y=2x+3, y=1. So coordinate: (-1,1). Check answers by substituting values back into both equations. Note, I have chosen equations that can be easily factorised at every step so a graphical explanation could be easily conveyed.

EF
Answered by Ewan F. Maths tutor

3957 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove that the decimal 0.303030... (recurring) has the value of 10/33


Solve 3x - 5 < 16


What is the simplest form of the fraction (8a^2+10ab)/(12a+15b)?


Work out an estimate for the value of (8.1 x 198)/0.0491


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences