A curve has the equation y=x^2+4x+4 and a line has the equation y=2x+3. Show the line and curve have only one point of intersection and find its coordinate..

First set the equations equal to each other: x^2+4x+4 = 2x+3.Rearrange for x in form ax^2+bx+c : x^2+2x+1=0Factorise: (x+1)^2=0. Repeated root, hence only one intersection. x=-1. Using y=2x+3, y=1. So coordinate: (-1,1). Check answers by substituting values back into both equations. Note, I have chosen equations that can be easily factorised at every step so a graphical explanation could be easily conveyed.

EF
Answered by Ewan F. Maths tutor

4628 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Rationalise the denominator of 2/(3-sqrt(2)).


Two shops have deals for purchasing pens: "3 for £2" and "5 for £3" . Mr. Papadopoulos wants to buy 30 pens for his class in school, which deal should he use if he wants to spend the least amount of money possible, and how much will he spend?


John ran a race at his school. The course was measured at 450m correct to 2sf and his time was given at 62 econds to the nearest second. Calculate the difference between his maximum and minimum possible average speed. Round you answer to 3sf.


If f(x) = 5 – x and g(x) = 3x + 7, simplify f(2x) + g(x – 1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning