How do you calculate arc length and sector area and why is it calculated like this? You are given sector angle 40 degrees and radius 7cm and asked to give answers to 3sf.

A sector represents a fraction of a circle. The fraction depends on the angle of the sector, X, and the total angle in a circle which is 360, such that the fraction is x/360. In this case the fraction is 40/360 = 1/9. The arc length represents one ninth (1/9) of the circumference. We know that the circumference is given by 2 * pi * radius, therefore the arc length is given by the fraction multiplied by the circumference. Arc length = (1/9) * 2 *pi * 7 = 4.89 cm to 3sf. The sector area represents one ninth (1/9) of the area of a circle. We know the area of the circle is given by pi * r2 therefore the sector area is given by the fraction multiplied by the area of the circle. Sector area = (1/9) *pi * 72 = 17.1 cm2 to 3sf.

PK
Answered by Peter K. Maths tutor

4826 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write (√(18)+10)/√(2) in the form: p + q√2 [4 marks]


n is an integer such that 3n + 2 ≤ 14, and 6n/(n^2 + 5) >1. Find all possible values of n.


The number of uniform spherical shots that can be made from a given mass of lead varies inversely to the cube of the radius. When the radius is 1mm the number of shots made is 2744. How many shots of radius 1.4mm can be made from the same mass.


How do you find 24% of 1546?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences