Simplify the following algebraic fraction; (3x^2 - x - 2) / ((1/2)x + (1/3)).

First we need to factorise the numerator into two expressions. We can see one expression must start (3x + ?) and the other therefore must hold (x + ?), we know this because the two brackets must multiply together to generate 3x2. Now we need to consider two numbers that will multiply together to give -2, this can be either +1 and -2 or -1 and +2. To gain the required -x in the original expression we see our factorisation must read: (3x +2)(x-1).Now we want to remove the fractional coefficients in the demonimator. We can do this by multiplying the top and bottom by 2x3=6 to get: (6(3x+2)(x-1))/(3x+2).The final step is to cancel terms in the demoninator and numerator that are equal. Cancelling (3x+2) leaves us with the simplified expression; 6(x-1).

BL
Answered by Bobbi L. Maths tutor

3910 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the turning points of the curve y=2x^3 - 3x^2 - 14.


Why is |z| = 1 a circle of radius one? (FP2)


Prove the identity: (sinx - tanx)(cosx - cotx) = (sinx - 1)(cosx - 1)


Shower-cleaner liquid is sold in spray bottles. The volume of liquid in a bottle may be modelled by a normal distribution with mean 955 ml and a standard deviation of 5 ml. Determine the probability that the volume in a particular bottle is:


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning