ABC is a right angled triangle. D is the point on AB such that AD = 3DB. AC = 2DB and angle A = 90 degrees. Show that sinC = k/√20 where k is an integer. Find the value of k

AB = 4DB

AC = 2DB

Find BC using Pythagoras:

BC = √(4DB)2 + (2DB)2

BC = √20DB2

= √20 DB

sinC = opp/hyp = 4DB/√20DB = 4/√20

so k = 4

TJ
Answered by Tom J. Maths tutor

14913 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are n sweets in a bag, 6 of which are orange. If the probablility of eating 2 orange sweets from the bag, one after the other, is 1/3, show that n^2 - n - 90 = 0. State any assumptions made.


Solve these simultaneous Equations: 4y-2x=8 and 2x-y=7


why does 4 / 0.5 =8?


how do you convert repeating decimals into a fraction?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences