In a science experiment a substance is decaying exponentially. Its mass, M grams, at time t minutes is given by M=300e^(-0.05t). Find the time taken for the mass to decrease to half of its original value.

Firstly, calculate the initial value of of M, by substituting t = 0 into the equation M=300e-0.05tInitially, M0= 300e0=300 x 1 = 300When the substance mass has decreased to half its initial value, M = 0.5 x 300 = 150.Hence, we have the equation 300e-0.05t= 150Solve: e-0.05t= 0.5-0.05t= ln 0.5t = -20ln0.5= 13.8629...= 13.9 (3 s.f.)It will take 13.9 minutes for the substance mass to decrease to half its original value.

BR
Answered by Bony R. Maths tutor

7309 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary points of y= 5x^2 + 2x + 7


Differentiate 7(3x^2+7)^(1/3)


Calculate the volume of revolution generated by the function, f(x) = (3^x)√x, for the domain x = [0, 1]


Find the values of x where the curve y = 8 -4x-2x^2 crosses the x-axis.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences