In a science experiment a substance is decaying exponentially. Its mass, M grams, at time t minutes is given by M=300e^(-0.05t). Find the time taken for the mass to decrease to half of its original value.

Firstly, calculate the initial value of of M, by substituting t = 0 into the equation M=300e-0.05tInitially, M0= 300e0=300 x 1 = 300When the substance mass has decreased to half its initial value, M = 0.5 x 300 = 150.Hence, we have the equation 300e-0.05t= 150Solve: e-0.05t= 0.5-0.05t= ln 0.5t = -20ln0.5= 13.8629...= 13.9 (3 s.f.)It will take 13.9 minutes for the substance mass to decrease to half its original value.

BR
Answered by Bony R. Maths tutor

7664 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the integral of ln(x)? Hint: use parts for this integration


How to express (4x)/(x^2-9)-2/(x+3)as a single fraction in its simplest form.


Integrate ((7e^(x/2))/4) with respect to x within the bounds of x=0 and x=2. (Basic introduction to definite integration)


Below is a question from the Edexcel Maths Core 1 textbook, Solve the equation x^2 + 8x + 10 = 0 using completing the square.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning