Find the equation of the tangent to curve y=5x^2-2x+3 at the point x=0

y=5x2-2x+3 Differentiate to find the equation of the gradient of the curve
dy/dx=10x-2 Substitute x=0 to find the gradient at the point x=0
dy/dx=-2

y=50^2-20+3 Substitute x=0 into the original equation to find y at that point
y=3

y=mx+c Using y=mx+c and substituting x=0, y=3 and m=-2 to find c
3=-2*0+c
c=3 Substitute m=-2 and c=3 to find the equation of the tangent
y=-2x+3

Answered by Maths tutor

5227 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you sketch the curve y=(x^2 - 4)(x+3), marking on turning points and values at which it crosses the x axis


Solve for x, between 0 and 360 degrees, 4cos2 (x) + 7sin (x) – 2 = 0


What is the angle between the position vectors a and b, where a = (6i - j + 3k) and b = (-4i + 2j + 10k)?


What is exactly differentiation?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences