Find the equation of the tangent to curve y=5x^2-2x+3 at the point x=0

y=5x2-2x+3 Differentiate to find the equation of the gradient of the curve
dy/dx=10x-2 Substitute x=0 to find the gradient at the point x=0
dy/dx=-2

y=50^2-20+3 Substitute x=0 into the original equation to find y at that point
y=3

y=mx+c Using y=mx+c and substituting x=0, y=3 and m=-2 to find c
3=-2*0+c
c=3 Substitute m=-2 and c=3 to find the equation of the tangent
y=-2x+3

Answered by Maths tutor

5790 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the integral of x^2 + 3x + 7?


Find the x-values of the turning points on the graph, y=(3-x)(x^2-2)


What is the equation of the tangent to the circle (x-5)^2+(y-3)^2=9 at the points of intersection of the circle with the line 2x-y-1=0


Express (5x + 3)/((2x - 3)(x + 2)) in partial fractions.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning