The numbers a, b, c and d satisfy the following equations: a + b + 3c + 4d = k; 5a = 3b = 2c = d. What is the smallest value for k for which a, b, c and d are all positive integers

  1. 5a = 3b = 2c = d. d must be a multiple of 5, 3 and 2, therefore the smallest possible value for d is 30. This sets a = 6, b = 10 and c = 152) a + b + 3c + 4d = 6 + 10 + 3x15 + 4x30 = 181 k = 181
MH
Answered by Michael H. Maths tutor

4233 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The points A and B have coordinates (2,4,1) and (3,2,-1) respectively. The point C is such that OC = 2OB, where O is the origin. Find the distance between A and C.


Differentiate arctan(x) with respect to x. Leave your answer in terms of x


Find the equation of the line tangential to the function f(x) = x^2+ 1/ (x+3) + 1/(x^4) at x =2


Core 3 Differentiation: If y = (3x^2 + 2x + 5)^10, find its derivative, dy/dx. Hint: Use the chain rule.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences