The numbers a, b, c and d satisfy the following equations: a + b + 3c + 4d = k; 5a = 3b = 2c = d. What is the smallest value for k for which a, b, c and d are all positive integers

  1. 5a = 3b = 2c = d. d must be a multiple of 5, 3 and 2, therefore the smallest possible value for d is 30. This sets a = 6, b = 10 and c = 152) a + b + 3c + 4d = 6 + 10 + 3x15 + 4x30 = 181 k = 181
MH
Answered by Michael H. Maths tutor

4599 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx, given that y=(3x+1)/(2x+1)


Differentiation: How to use the chain rule


Show that the equation 2sin^2(x) + 3sin(x) = 2cos(2x) + 3 can be written as 6sin^2(x)+3sin(x) - 5 = 0. Hence solve for 0 < x < 360 degrees. Giving your answers to 1.d.p.


Complete the square for the following equation: 2x^2+6x-3=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning